Study of Angular Distribution of Cosmic Ray Muons using INO-ICAL Prototype Detector at TIFR

Sumanta Pal

Tata Institute of Fundamental Research (TIFR), Mumbai, India RPC2012, INFN - LNF, 7/2/2012 Rome, Italy, (5-10 Feb., 2012)

Schematic of ICAL detector

India based Neutrino Observatory (INO), an underground laboratory facility coming up in India.
 1st phase goal : confirm neutrino oscillation, mass ordering in neutrino sector etc.

Proposed detector is a IronCALorimeter (ICAL) with 50kton of Iron as target mass.

>28,800 Resistive Plate Chambers $(2m \times 2m)$ will be the active detectors in ICAL.

R&D is going on for RPCs, electronics, gas mixing
& its purification, the electromagnet etc..

1m x 1m RPC Prototype at TIFR Working since 2006

> 1m x 1m RPC Prototype with Magnet at VECC, Kolkata. Working since 2011

(5-10 Feb 2012)

2m x 2m RPC

Prototype at TIFR

working since 2009

7/2/2012

RPC2012 INFN - LNF, Rome, Italy

Prototypes status

- All prototypes are performing well.
- Noise rate, detector current etc. are stable with respect to temperature, humidity etc.
- No ageing effect observed in any detector.
- Industrial interface is going on to make large number of RPCs for ICAL.
- Some existing references for detector working status:
 - ^o Ref1 : V. M. Datar, et al., NIMA 602 (2009) 744.
 - ^o Ref2 : A. Behere et al., NIMA 602 (2009), p. 784.
 - Ref3 : RPC 2010 proceedings.

Today's topic

 Physics Results from 1m x 1m RPC prototype stack at TIFR

 Cosmic Muon angular distribution at sea level and the vertical integrated Muon Flux

Primary cosmic radiation is isotropic at top of the atmosphere

- •Primary cosmic rays \implies Pions \implies Muons
- Interaction & decay of Pions : a competition between two while reaching Earth's surface.
- Vertical direction Pions decay probability less, so less number of Muons.
- Inclined direction Pions decay rate is more, but to cover more atmospheric length than vertical, incident energy should also be higher. Primary cosmic muon flux falls off at higher energy.
- •So, if it assumed an isotropic muon flux is reaching the Earth's surface what a flat detector will observe?

A flat detector of surface area 'A' will see Muon spectrum as

$$\int I_0 (A\cos\theta) \sin\theta d\theta d\phi = I_0 \cos^2\theta$$

The General Angular Distribution of Cosmic ray Muons

$$I_{\theta} = I_0 \cos^n \theta$$

- The exponent, n = 2, is based up on an approximation.
- It depends on Energy, Latitude, Altitude/Depth etc.
- I_0 is the vertical flux (cm⁻² sec⁻¹ str⁻¹)

What the detector observes :

What the detector see

Experimentally observed spectrum (N(θ))

Observed zenith angle distribution of muons

• Slope and intercept are used to calculate zenith angle of incident cosmic muons.

$$\theta = \cos^{-1}\left(\frac{h}{l}\right)$$

h is vertical height of the detector stack & 1 is the corresponding track length of muons.

Detector geometrical acceptance $(\omega(\theta))$

- Generate a point randomly on top trigger layer (x_9, y_9)
- θ is generated uniformly over the solid angle using random number. ϕ is generated uniformly over the azimuthal angle (0 to 2π).
- Hit point at the bottom layer (x_2, y_2) is generated and also for the other layers.
- Smearing of these hits are done on the basis of :
 - Layer residual effect (seen in real data)
 - Hit multiplicity effect.

Contd.

- At this stage a hit point in this Monte-Carlo based calculation is still accepted with 100% efficiency where ever it is, either central region of the RPC or at the corner.
- As the hit point generation use uniform random number this 100% efficiency is obvious.
- In reality, there is a variation of this efficiency over the RPC area.

Pixel wise tracking efficiency for layer 1(x side)

Trigger with layers
0,1,3,4 are used to get
the efficiency for layer 6
to 11.
Trigger with layers
7,8,10,11 are used to get
efficiency for layers 0 to
5.

Otherwise, vertically downward muon efficiency may be underestimated

Detector acceptance

- This pixel wise efficiency profile is taken into consideration while selecting a hit point in Monte-Carlo process for detector acceptance.
- Finally selected hits are fitted with a straight line, exactly same as data.
- The angular distribution here in MC gives detector acceptance profile as $I(\theta)$ effect is absent in MC.

$$N^{MC}_{\theta_1 \to \theta_2} = \int_{\theta_1}^{\theta_2} N^{MC}(\theta) d\theta = \int_{\theta_1}^{\theta_2} \bigcup_{\theta_1} \omega(\theta) d\Omega$$

Detector geometrical acceptance profile

Chi-square definition to get $I_0 \& n$

$$\chi^{2} = \sum_{\theta=0}^{\theta_{max}} \frac{\left(N_{\theta}^{Exp} - p(0)cos\theta^{p(1)}w(\theta)\right)^{2}}{N_{\theta}^{Exp}}$$

- $I_0: p(0)$
- n : p(1)
- $w(\theta)$: weight factor per θ bin from detector acceptance plot

Flux Distribution

Vertical Flux calculation

- To get the shape of this cosmic muon flux distribution, a uniform flux incident up on the top layer of the detector was assumed in MC while estimating detector geometrical acceptance.
 - Remember θ is generated uniformly over the solid angle, i.e., $\int \sin \theta d\theta$
 - Now to get back the vertical flux θ has to be generated through $\int \cos^{2.33} \theta \sin \theta d\theta$

Contd.

$$\frac{I_0^{fit}}{Time \times \mathcal{E}_{trigger}} \times \mathcal{E}_{tracking} \times \Omega$$

- •Time : total time through which data is collected with dead time correction
- \bullet ϵ are efficiency correction to get the actual number fallen on top of the detector
- • Ω is the solid angular correction

$$I_0 = (6.050 \pm 0.001) \times 10^{-3} \text{ cm}^{-2} \text{ sec}^{-1} \text{ str}^{-1}$$

Comparison of vertical integral muon flux

Authors	Geomagnetic		Altitude	Momentum	$Flux \times 10^{-3}$
	Lat. (⁰ N)	P _c (GV)	(m)	(GeV/c)	(cm ⁻² sec ⁻¹ Str ⁻¹)
Allkofer et al. ¹	9	14.1	S.L	≥0.32	7.25 ± 0.1
Karmakar et al. ²	16	15.0	122	≥0.353 ≥1.0	$\begin{array}{l} 8.99 \pm 0.05 \\ 6.85 \pm 0.04 \end{array}$
Gokhale ³	19			≥0.32	7.3 ± 0.1
Fukui et al. ⁴	24	12.6	S.L.	≥0.34	7.35 ± 0.2
Present Data	18		<i>S.L</i> .	≥ 0.28 7	6.050 ± 0.001
Rossi ⁵	≥50	~1.8	S.L.	≥0.32	8.3
Greisen ⁶	54	1.5	S.L.	≥0.33	8.3 ± 0.1
Crookes & Rastin ⁷	53	2.2	40	≥0.35	9.13 ± 0.12

List of References:

- 1. Allkofer et al., Canadian Journal of Physics, 1968, 46: (10) S301-S305, 10.1139/p68-233.
- 2. N.L.Karmakar et al., Nuovo Cimento B 17, 173 (1973).
- 3. G.S.Gokhale, Private Communication (1953) (after Allkofer et al. 1968^{*}).
- 4. S.Fukui et al., J.Phys.Soc. Japan 12, p.854 (1957)*.
- 5. DOI: 10.1103/RevModPhys.20.537.
- Greisen, Phys. Rev. 61, 212 (1942), Phys. Rev. 63, 323 (1943), Phys. Rev. 62, 316 (1942).
- 7. Crrokes & Rastin, Nucl. Phys. B 39(1972) 493-508.
- 8. Cosmic Rays at Earth, Researchers' Reference Manual and Data Book, Peter K.F.Greider, Elsevier.

More Contributions in RPC2012:

- Electronics and Data Acquisition systems for the RPC based INO ICAL detector by Dr. B.
 Satyanarayana, TIFR (7th Feb., Poster Session).
- Preliminary results on optimization of gas flow rate for RPCs, by S.D.Kalmani, TIFR (8th Feb).
- Proposed Trigger Scheme for the ICAL detector of INO, by Sudeshna Dasgupta, TIFR (9th Feb).

